Absence of a cysteine protease effect on bacterial virulence in two murine models of human invasive group A streptococcal infection.
نویسندگان
چکیده
The cysteine protease of group A streptococci has been suggested to contribute to the pathogenesis of invasive infection through degradation of host tissue, activation of the host inflammatory response, release of protective molecules from the bacterial cell surface, or other mechanisms. However, studies of the effects on virulence of inactivating the cysteine protease gene speB have yielded conflicting results. In some reports, a speB mutant was relatively avirulent in mouse models of invasive infection whereas little or no attenuation of virulence was observed in other studies of similar mutant strains. Possible reasons for these discordant results include differences in the streptococcal strains from which the speB mutants were derived, differences in the infection models employed, or unintended effects on another virulence determinant(s) that arose during the derivation of a speB mutant. We attempted to clarify these issues by characterizing the phenotypic properties and relative virulence in mice of two speB mutant strains, both derived from wild-type strain AM3: speB mutant AM3speB, which has been shown to be markedly attenuated in virulence in mice after intraperitoneal or subcutaneous challenge, and AM3speBOmega, a new mutant strain derived for this investigation. Both mutant strains were negative for protease activity, as expected, and both produced wild-type amounts of type 3 M protein and streptolysin O. However, AM3speB produced significantly less cell-associated hyaluronic acid capsule than did parent strain AM3 or strain AM3speBOmega. Compared to wild-type strain AM3, AM3speB was more sensitive to opsonophagocytic killing in vitro and was significantly less virulent in mice after intraperitoneal challenge. By contrast, AM3speBOmega was fully resistant to phagocytosis and did not differ significantly from the wild-type strain in mouse virulence after an intraperitoneal or subcutaneous challenge. We concluded that previous reports attributing loss of virulence in strain AM3speB to inactivation of speB are in error. Within the limitations of the models used, we found no effect of cysteine protease on invasive streptococcal infection.
منابع مشابه
Expression and characterization of group A Streptococcus extracellular cysteine protease recombinant mutant proteins and documentation of seroconversion during human invasive disease episodes.
A recent study with isogenic strains constructed by recombinant DNA strategies unambiguously documented that a highly conserved extracellular cysteine protease expressed by Streptococcus pyogenes (group A Streptococcus [GAS]) is a critical virulence factor in a mouse model of invasive disease (S. Lukomski, S. Sreevatsan, C. Amberg, W. Reichardt, M. Woischnik, A. Podbielski, and J. M. Musser, J....
متن کاملMetal-mediated modulation of streptococcal cysteine protease activity and its biological implications.
Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is...
متن کاملMolecular analysis of the role of the group A streptococcal cysteine protease, hyaluronic acid capsule, and M protein in a murine model of human invasive soft-tissue infection.
Human invasive soft-tissue infections caused by group A Streptococcus are associated with significant morbidity and mortality. To investigate the pathogenesis of these serious infections, we characterized the host response to bacterial challenge with an M-type 3 isolate recovered from a patient with necrotizing fasciitis, or with isogenic gene replacement mutants deficient in cysteine protease,...
متن کاملThe streptococcal cysteine protease SpeB is not a natural immunoglobulin-cleaving enzyme.
The human bacterial pathogen Streptococcus pyogenes has developed a broad variety of virulence mechanisms to evade the actions of the host immune defense. One of the best-characterized factors is the streptococcal cysteine protease SpeB, an important multifunctional protease that contributes to group A streptococcal pathogenesis in vivo. Among many suggested activities, SpeB has been described ...
متن کاملThe IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing.
Interleukin-8 (IL-8) promotes neutrophil-mediated host defense through its chemoattractant and immunostimulatory activities. The Group A Streptococcus (GAS) protease SpyCEP (also called ScpC) cleaves IL-8, and SpyCEP expression is strongly upregulated in vivo in the M1T1 GAS strains associated with life-threatening systemic disease including necrotizing fasciitis. Coupling allelic replacement w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 69 11 شماره
صفحات -
تاریخ انتشار 2001